TDA Progress Report 42-73

January—March 1983

Simplified Syndrome Decoding of (n, 1) Convolutional Codes

l.S. Reed

Department of Electrical Engineering
University of Southern California

T. K. Truong

Communication System Research

This paper presents a new syndrome decoding algorithm for the (n, 1) convolutional
codes (CC) that is different and simpler than the previous syndrome decoding algorithm
of Schalkwijk and Vinck. The new algorithm uses the general solution of the polynomial
linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine
solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to
find the minimum weight ervor vector E(D) in this ervor coset. An example illustrating
the new decoding algorithm is given for the binary nonsymmetric (2, 1) CC.

. Introduction

In this paper the syndrome decoding algorithm invented in
1976 by Schalkwijk and Vinck (Ref. 1) is simplified and gener-
alized to all (#, 1) convolutional codes (CC), both systematic
and nonsystematic. Indications are given also of how the tech-
niques used here can be further extended to apply to any
(n, k) CC for which a parity check polynomial matrix can be
found.

Following Refs. 2 and 3, the input X(D) and output
sequences Y{(D), * * -, Y,,(D) of an (n, 1) CC are formal power
series of finite length over a finite field GF(q) in the unit
delay operator D. The input X(D) and the output Y(D) =
[Y,(D), -, Y,(D)], as a vector, are connected by a 1 X n
polynomial generator matrix G(D) of form

G = [G,(D),",G, (D), (1)

where G,(D) are monic polynomials of finite degree in D over
GF(q). This relationship is

Y(D) = X(D)G(D) )

The maximum degree M of the polynomials in G(D) is called
the memory and the constraint of the code is L =M + 1.

To avoid the possibility of catastrophic error propagation
the important criterion of Massey and Sain (Ref. 4) is a neces-
sity. In this paper attention is restricted to coder inverses with-
out delay. Hence one must have

GCDIG, (D), ++,G,D)] = 1

where GCD denotes “greatest common divisor” and G, (D) is
the kth component polynomial of G(D) in (1).
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The parity-check matrix H(D), associated with a general
k X n generator matrix G(D), is a £ X (n - k), maximum rank
matrix of polynomials over GF(q) with the property

GDHTD) = 0 3)

where T denotes matrix transpose. If G(D) is the generator
matrix of a systematic (n, k) CC, G(D) has the form [I,P(D)]
where [, is the k X k identity matrix and P(D) isa k X (n - k)
matrix of polynomials in D over GF(q). In this case it is easily
shown (Ref. 5) that

H{D) = [-PT(D),I_, ] €))

is the appropriate parity check matrix.

The parity check matrix H(D) for the general nonsystematic
(n, k) CC is considerably more difficult to find. Forney in
Ref. 3 develops a general procedure to find H(D). However,
for the (n, 1) CC considered in this paper the powerful ma-
chinery of Forney is not needed. For the nonsystematic (n, 1)
CC with the generator matrix G(D), given in (1), it is easily
verified that

?;2(1)), G,(D), 0 .0 ]
G,(D), 0, G@ ... 0

H(D) = . . i . {3
G, (D), 0, 0 G, (D)

satisfies (3) and is a parity check matrix.
Let Z(D) = Y(D) + E(D) be the received code sequence in

powers of the delay operator D, possibly corrupted by an error
or noise sequence £(D). The syndrome S(D) of Z(D)is defined

by
S(D) = Z(D)H(D) (6)
By (2) and (3) the syndrome reduces to
SD) = [(Y(D)+ED)H(D) = EQ)HT(D) (7)

in terms of the noise sequence E(D), only. For example by (5)
and (7) the syndrome for the 1/2 rate code, (2, 1) CC, is

S(D) = E,(D)G,(D) + E,(D)G,(D) (®
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For the 1/3 rate code, (3, 1) CC,

SD) = [5,(D), $,(D)]

[£,(D)G,(D) + E,(D)G,(D), £, (D)G4(D)

+E4(D)G,(D)] )

In Ref. 1 Schalkwijk and Vinck showed how the states of
the syndrome processor of S(D) in (8) could be used to form a
trellis diagram for implementing a recursive algorithm similar
to the Viterbi algorithm (Ref. 5). In the present paper this idea
is extended in a manner which is simpler and more easily
applied. The departure point for the new simplified syndrome
decoding is to first find the solution of the syndrome equa-
tion (7) for the error vector E(D).

This technique for finding the solution of (7) for error vec-
tor E(D) is illustrated by finding solutions for E (D) in the
special cases (8) and (9). The total set in which the solutions
E, (D) are to be found is the set F'[D] of all polynomials in
operator D over F=GF(q). It is well known (Ref. 6) that
F[D] is an integral domain (a commutative ring without zero
divisors) and as a consequence satisfies many of the properties
of the integers. In particular (8), (9) and more generally (7) are
linear Diophantine equations over polynomials in D instead of
the integers.

Using techniques precisely similar to those used for the
integers, e.g., see Ref. 6, the general solution of (8) is readily
found. Since GCD[G (D), G,(D)] =1, the Euclidean algo-
rithm can be used to find polynomials (D) and a,(D) such
that

a,(D)G, (D) +a,(D)G (D) = 1.
In terms of oy (D) the general solution of (8) is

E (D) = ,(D)S(D) + G,(D)t(D)
(10)
E,(D) = ¢,(D)S(D) + G,(D)1(D)

where £(D) is an arbitrary polynomial in F[D] .

To find the Diophantine solution of (9), first eliminate
E (D) from the two components S (D) for (k=1,2) by
multiplying the first component by G5(D) and the second by
G,(D). The resulting equation after subtraction is

[E,(D)G4(D) - E,(D)G (D)) G (D) = G,(D)S (D)
= G,(D)S,(D)
(11)




Observe that in terms of the original computation of S(D) in

(6),
G,(D)S, (D)~ G,(D)S, D) = G,(D)[Z,(D)G,D)

+Z,(D)G,(D)]
- G,(D)[Z,(D)G,(D)
+Z,(D)G, )]

= [2,(D)G,4(D)
- Z,(D)G,(D)] G,(D)

so that the right side of (11) is always divisible by G, (D).
Dividing (11) by G, (D) yields

EZ(D)G_,,(D) ~ E3(D)G2(D) = R(D) (12)
where

[G,(D)S,(D) - G,(D)S,(D)]
G,(D) ’ (13)

R(D) =

a polynomial in D over GF(q). The greatest common divisor
of the G, (D)’s must equal one by the Massey and Sain crite-
rion. This criterion is achieved for this case by assuming
GCD[G,(D), G4(D)] = 1. Thus (12) has a solution similar to
(10), namely,

E,(D) = B,(D)R(D) + G,(D)1(D)

(14)

E4(D) = ~B,(D)R(D) + G4 (D)t(D)

where g8, (D) and 8,(D) are a particular solution to
B,(D)G,(D) + B,(D)G,(D) = 1 (15)

and #(D) is an arbitrary polynomial in D over GF(q). Finally
to find £,(D) substitute (14) into the components of S(D) in
(9) and solve for £, (D) by multiplying the first equation by
B,(D) and the second by B5(D). This yields

E,(D) = §,(D)B,(D) +5,(D)85(D) -~ G,(D)1(D)

(16)

where §8,(D) and $5(D) satisfies (15). Equations (14) and (16)
with (15) where t(D) e F[D] constitute the general solution
of (7) for E(D) of the (3, 1) CC. The above Diophantine tech-
niques extend to yield solutions to alf (n, 1} CC. In fact it is
readily demonstrated that the general solution of (7) for E(D)
is the linear function

EMD) = L[t(D)] = Ly(D)+L (D)t(D) 17

for all #(D) in F[D]. The set of all L [#(D)] is a coset of the
(n, 1) CC code space {L (D)t(D)|t(D)e F[D]}.

In order to use syndrome decoding to find a maximum
likelihood estimate (MLE) E(D) of the actual error sequence,
both the weight of the sequence and the channel need to be
defined. For an (n, 1) CC a possible error sequence is of form
ED) = [E\(D), E,(D), -+ ,E,(D)] where E, (D) are finite
degree polynomials over GF(q). The Hamming weight of
E(D)is

n

W ED)] = 3 Wy lE,D)]
k=1

where Wy [E,(D)], the Hamming of polynomial £, (D), is the
number of nonzero coefficients of £, (D). Assume the channel
over which Y(D) is sent is approximated by a g-ary channel
(see Ref. 2, Sec. 7.2).

If deg[X(D)] <L - 1, the codeward Y(D)=[Y,(D), ',
Y, (D)] is the Lth truncation of an (n, 1) CC (Ref. 2, p. 203).
Each component Y, (D) has degree < M +L -1 where M is
memory of code. For a truncated (7, 1) CC transmitted over a
q-ary symmetric channel it is evident that the MLE of an error
vector is E(D) such that

Wy(E) = Min {L[#(D)]} (18)
tD)

where L [#(D)] is the linear Diophantine solution (17) for
E(D) of syndrome equation (7)

The above procedure for finding the MLEE(D) is equivalent
to the standard syndrome decoding technique used for block
codes, e.g., see Ref. 7. In the next section a recursiye or
Viterbi-like algorithm is developed to efficiently find E(D),
the estimate of the error sequence.
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Il. Recursive Syndrome Decoding

The new technique of recursive syndrome decoding is pre-
sented by example, with the same nonsystematic (2, 1) CC
used in Ref. 1. For this code,

G(D) = [G,(D), G,(D)]

I

[1+D?% 1+D+D?]

and

HD) = [G,(D),G (D)] = [1+D+D* 1+D?]

are the generating and parity-check matrices, respectively. By
(8) the syndrome is

S(D) = Z,(D)(1+D+D*)+Z,(D)(1 +D?)

= 2,0+ 20(D) + 20(D) + 2,D) + ZP(D)

(19)

Note that terms such as Z(ll)(D) in this expression can be
regarded either as a delayed version of Z, (D) or a right shift of
sequence Z,(D) when viewed as a sequence proceeding from
left to right. Finally the Diophantine solutions (10) of the
syndrome equation (8) for error sequences £, (D) and E,(D)
are

E (D) = DS(D)+ (1 +D*)¢(D)

= SOX(D) + £(D) + tP(D)
and
E,(D) = (1+D)S(D)+(1+D+D*)D)
= S(D) + SDD) + t(D) + tO(D) + :D(D) (20)
since

o, (D) =D and ayD)=1+D

constitute a particular solution of
a,(D)G (D) +a,(D)G,(D) = L.

Schalkwijk and Vinck (Ref. 1) used the states of the sequen-
tial circuit, used to form the syndrome S(D), for the states of
their trellis diagram. Here the states of the trellis diagram are
obtained from the states of the shift register needed in (20) to
obtain (D) and +@(D) from (D). A block diagram of a
shift register to produce the delayed versions, t((D) and
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t@)(D), from ¢(D) is shown in Fig. 1. The state table of this
shift register, when regarded as a sequential circuit, is given in
Fig. 2. Finally in Fig. 3 the trellis diagram, associated with
this state table is presented. A solid-line transition in Fig. 3
corresponds to the input (D) =0; a dashed-line transition
corresponds to the input ¢(D) = 1.

The new Viterbi-like syndrome decoding algorithm is illus-
trated by example in Fig. 4. For this example assume that the
message to be transmitted is the six-bit message

X(D)=[01001 0]
so that the truncation length is L = 6. By (2)
Y (P)=[0101101 0]
and
Y,0)=[01111110]

are the two components of Y (D). Thus the scalar represen-
tation of the code word is

C=[0011011111011100]

of overall code length n(L +M)
pp. 201-203).

2(6 +2) = 16 (see Ref. 2,

Let the received codeward be
R=J1011001111111100]
Then
ZMD)y=[11011110]
and
Z,D)y=[01011110]

are the two components of received message Z(D). Using (19)
this syndrome sequence is

n

S(D) = 1+D+D*+D° + D% + D7

it

[T10011110]

both as a polynomial in D over GF(2) and as a simple finite
sequence. The latter representation of S(D) is shown in Fig. 4
with its digits placed over the transition paths of the trellis.

Let us proceed briefly through the trellis. The syndrome is
set to O prior to stage O so that at stage 0, S(D) =0, and




S(D) = 1. Likewise it is assumed initially that the shift register
in Fig. 1 is cleared so that t(0(D) = +2)(D) = 0. This puts the
algorithm at stage O at stage @ = [0, 0]. The label on branch
t(D) = 0 is found by substituting these values in (20). That is,

E (D) = SOD)+ D)+ 1DD) = 0+0+0 =0

E,(D)

S(D) + SDD) + (D) + tO(D) + tD(D)

[+0+0+0+0 = 1|

Hence the label on branch (D) =0 at stage zero in [&,(D)
E,(D)] = [0, 1]. By the same substitution but with t(D) =1,
the label on the alternate branch is [E (D), E,(D)] = [1, 0],
the componentwise complement of the previous branch. The
Hamming weight of [£,(D), E,(D)] for both these branches
is 1. Note that this weight of 1 is placed immediately above
states @ and ¢ at stage 1.

To illustrate the Viterbi or dynamic-programming technique
for computing survivors in the trellis suppose that the algorithm
is either at state @ or state & at stage 2. Note from Fig. 3 that
there are only two ways to state a, by a transition from b to
@ or atransition from a to a. At state 4 or b at stage 2,5(D) =0
and SA)(D)=1. At stage 2 at state a, r0(D)=0 and
t®(D) = 0 so that at branch #(D) = 0,

E,(D) = SOMD)+ D)+ :BD) = 1+0+0 =1

1]

E,(D) = S(D)+ SOD) + 1(D) + tDD) + (D)

[

0+1+0+0+0 =1
The total weight of [E,(D), E,(D)] for the minimum weight
path, going through state @ at stage 2, is thus 2 + 2 = 4. How-

ever, at stage 2 at state b, t()(D) =0 and t@)(D) = 1, so that
at branch #(D) =0,

E, D) = SOD)+ D)+ tDD) = 1+0+1 =0

E,(D)

S(D) + SW(D) + (D) + tW(D) + tB(D)

0+1+0+0+1 =0

Thus the total weight of [E,(D), £,(D)] for the minimum
weight path, going through state b at stage 2 is thus 3 +0=3.
Since this weight is smaller than the previous weight, only the
path going through state b to a at stage 2 survives. The seg-
ment of path from state @ to « is deleted as shown in Fig. 4.
Similarly in Fig. 4 some paths lead to equal weights or a “tie.”

In such a case either segment can be chosen as part of the
survivor path.

The entire trellis diagram shown in Fig. 4 is completed by
the rules illustrated above. At stage 9 the minimum weight
path in the trellis diagram of Fig. 4 isacd bcbcdba.The
branches of this path yield

ED)

[10000100,00100000]

[1+D%,D%] = [E (D),E,D)]

as the estimate of the error vector. Subtracting these estimates
of the error from Z(D) produces

YI(D)=[01011010]
and

P, =[01111110)

as estimates of the transmitted coded message. Finally the
inverse linear sequential circuit of Massey and Sain (Ref. 4),
with equation ’

X(D) = (1+D) ?;(D) +D?,(D)

is used to find X (D) = {010 0 1 0] as an estimate of the
original message.

For the above example, this new syndrome decoding algo-
rithm yields the original message. However, if the number of
errors exceeds the capability of the code, at the end of the
decoding period there may exist two or more paths with the
same minimum error weight. In such a circumstance a decod-
ing failure and an erasure should be declared.

Ill. Conclusions

In this paper a new simplified syndrome decoding algorithm
for (n, 1) CC is developed which utilizes the general Diophan-
tine solution for the error vector E(D) in the syndrome equa-
tion. The least weight error vector E (D) is found by a recursive
Viterbi-like algorithm, similar to an algorithm conceived pre-
viously by Schalkwijk and Vinck (Ref. 1)

This new syndrome decoder appears to be comparable in
complexity to the Viterbi decoder except that in the new
decoder fewer comparisons are required and the control
logic is considerably simpler. Another possible advantage of
the new algorithm is its ability to detect decoding failures
more readily than the classical Viterbi approach. A more
detailed comparison of these decoders is a topic for further
study.
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Fig. 1. Shift register to generate delayed
versions of (D)

Fig. 2. State table of shift register
for t(D)
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Fig. 3. Trellis diagrém of shift register for (D). Input t(D) = 0 is represented by a solid line.
t(D) = 1 is represented by a dashed line
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Fig. 4. New Viterbi-like syndrome decoding algorithm. Each branch of trellis is labeled with [E,(D), E,(D)]
where E,(D) = SUY(D)-+t(D)+t ®(D) and E,(D) = S(D)+S"(D)+t()(D)+t*(D). Each node at k Is labeled with W,[E, (D),
E,(D)] up totime k
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